
Kayvon Fatahalian 
Carnegie Mellon University

100 Quadrillion Live Pixels: 
The Challenge of Continuously Interpreting, 
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Visual computing
2D/3D graphics

Image processing / computational photography 

Computer vision (visual scene understanding)

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.
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Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)



The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)



The frame buffer
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Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)



Goal: render everything you’ve ever seen

“Road to Pt. Reyes” 
LucasFilm (1983)



“We take an average of three hours to draw a single frame on the fastest computer money can buy.” 
  - Steve Jobs

Pixar’s Toy Story (1995)



UNC Pixel Planes (1981), computation-enhanced frame buffer



Figure 2: Photograph of the Geometry Engine. 

Ed Clark’s Geometry Engine 
(1982) 

ASIC for geometric transforms 
used in real-time graphics.



SGI RealityEngine GE8 board (1993)

4.4 Triangle Bus
All graphics architectures that implement parallel primitive pro-
cessing and parallel fragment/pixel processingmust also implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many of the issues concerning the placement
of this crossbar are beyond the scope of this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
the Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom SeriesTM implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-
propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation or rasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth, rather than the prim-
itive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.
The PixelFlow[6] architecture also pairs Geometry Engines and

FragmentGenerators,but the equivalent of ImageEngines andmem-
ory for a pixel tile are also bundled with each Geome-
try/Fragment pair. The crossbar in this architecture is the composit-
ing tree that funnels the contents of rasterized tiles to a final display
buffer. Because the framebuffer associated with each processor is
smaller than the final display buffer, the final image is assembled as
a sequenceof logical tiles. Efficient operation is achieved
only when each logical tile is rasterized once in its entirety, rather
than being revisited when additional primitives are transformed. To
insure that all primitives that correspond to a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin. This substantially increases the system’s latency, and
requires that the rendering software support the notion of frame de-
marcation. Neither the core X renderer nor OpenGL support this
notion.

4.5 12-bit Color
Color component resolution was increased from the usual 8 bits to
12 bits for two reasons. First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When 8-bit linear intensities are gamma corrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gamma lookup ta-
bles used at display time eliminates visible banding. Second, it is
intended that images be computed, rather than just stored, in the
RealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multiple slices
through the data set. If the framebuffer resolution is just sufficient to
displayan acceptable image, repeatedcompositionswill degrade the

Figure 6. A scene from a driving simulation running full-screen at
30 Hz.

Figure 7. A 12x magnified subregion of the scene in figure 6. The
sky texture is properly sampled and the silhouettes of the ground
and buildings against the sky are antialiased.

resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.
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Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a NVIDIA Titan X



NVIDIA Titan X GPU 
(~ 7 TFLOPs fp32)

Tesla generation NV chip ~ ASCI Red



Modern GPU: heterogeneous multi-core
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Multi-threaded, SIMD cores 
Custom circuits for key graphics arithmetic 
Custom circuits for HW-assisted graphics-specific DRAM compression 
HW logic for scheduling work onto these resources



Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected 
vertex stream

Primitive Generation

Primitive stream

Fragment Generation 
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output 

image buffer 
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)



Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected 
vertex stream

Primitive Generation

Primitive stream

Fragment Generation 
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output 

image buffer 
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)

uniform	sampler2D	myTexture; 

uniform	float3	lightDir;	

varying	vec3	norm;	

varying	vec2	uv; 

void	myFragmentShader() 

{ 

		vec3	kd	=	texture2D(myTexture,	uv); 

		kd	*=	clamp(dot(lightDir,	norm),	0.0,	1.0); 

		return	vec4(kd,	1.0);			 

}	

read-only 
global variables

“per-element” inputs

per-element output: 
RGBA surface color at pixel

“fragment shader” 
(a.k.a kernel function mapped onto 
input fragment stream)



Generalization beyond graphics: 
commodity parallel computing

NVIDIA CUDA (2007)
Brook for GPUs (Buck 2004)



Goals of visual computing (to date)

Modeling the real-world in increasingly rich detail: so we 
can simulate it (“render everything you’ve ever seen”) 

Depict and organize information to augment human 
thought: enable humans to effectively use computing to 
create/analyze/interpret/communicate



Key characteristics of visual computing

Requires exceptional levels of efficiency 
- Applications turn more ops/watt into new value 
- Pack chips full of ALUs (parallel, heterogeneity/specialization are fundamental) 
- Applications utilize hardware pipelines very well 

Embrace domain-specific programming frameworks 
- Achieve high efficiency/productivity 
- Today: OpenGL, Halide, game engine frameworks, deep learning frameworks 

Aspects of computation are fundamentally approximate 
- Manifests as willingness to change algorithms (not approximate HW)



Visual computing — what’s next?



Goals of visual computing (present — future)

To capture everything that can be seen  

To enable humans to communicate more effectively 

To record and analyze the world’s visual information so 
that computers can understand and reason about it



The immediate future: capturing rich visual 
information to enhance communication



Ingesting/serving 
the world’s photos

Ingesting/streaming 
world’s video

2B photo uploads and shares 
per day across Facebook sites 
(incl. Instagram+WhatsApp)  

[FB2015] 

Youtube 2015: 300 hours 
uploaded per minute [Youtube] 

Cisco VNI projection: 
80-90% of 2019 internet 

traffic will be video. 
(64% in 2014) 

Capturing pixels to communicate



Richer content: beyond a single image
■ Example: Apple’s “Live Photos” 
■ Each photo is not only a single frame, but a few seconds of video before and after the 

shutter is clicked 



Facebook Live



Acquiring richer content: light fields

Stanford camera array 
Wilburn [2005]



Richer content: light fields

Light L16

Lytro Illum



What Does a 2D Photograph Record?

x

ux

u

Light field camera: capturing a light field

Sensor

Imagine Recording the Entire 4D Light Field

x

u
x

u

Camera 
Aperture

Object being 
photographed

2D traditional camera: 
measures how much light hits a 

point on sensor 

“4D” light field camera: 
measures how much light hits point 
on sensor from a particular direction

[Slide courtesy Ren Ng]

Object being 
photographed



[Slide courtesy Ren Ng]
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Sensor industry has large untapped resolution

Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

1/3” Sensor 
4.8 x 3.6 mm 
Up to 13 MP 

1.12 micron pixel
[Slide courtesy Ren Ng]



Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

Full-Frame Sensor 
36 x 24 mm 

688 MP 
1.12 micron pixel

Sensor industry has large untapped resolution

[Slide courtesy Ren Ng]



Lytro Cinema 755 Mpixel camera



VR output



Example: Google’s JumpVR video 
Input stream: 16 4K GoPro cameras

Register + 3D align video stream (on edge device) 
Broadcast encoded video stream across 
the country to millions of viewers



VR creates high resolution requirements

iPhone 6: 4.7 in “retina” display: 
1.3 MPixel 

326 ppi → 57 ppd

~5o

180o

Future “retina” VR display: 
57 ppd covering 180o 

 = 10K x 10K display per eye 
=  200 MPixel

RAW data rate @ 120Hz ≈ 72 GB/sec



VR: Light field display

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay
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Head-Mounted Near-Eye Light Field Display Prototype

Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.

Links: DL PDF WEB VIDEO

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image Display I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: light field displays, head-mounted displays, microlens
arrays, accommodation-convergence conflict, virtual reality

1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Simple idea: 
Recreate the same light field that was 
present in the scene when it was captured

146 x 78 spatial resolution 
Using 1MP microdisplay

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay
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Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.
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Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-
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Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.
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We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
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1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Output of display (prior to optics)

[Lanman 2013]



Enhancing communication: understanding 
images to improve acquired content

AutoEnhance: Photo “fix up” [Hayes 2007]

My bad vacation photo Part to fix

Similar photos others 
have taken

Fixed!



Summary

We are observing rapid growth in the richness of visual 
communication 

Sensing the world with higher fidelity to deliver improved 
content to humans



2030 challenge: recording and analyzing the 
world’s visual information, so computers can 

understand and reason about it



Capturing everything about the visual world

To understand people 
To understand the world around vehicles/drones 
To understand cities

Mobile 
Continuous (always on) 
Exceptionally high resolution 
Capture for computers to analyze, not humans to watch



Capturing images to understand humans
(why there will be high-resolution camera(s) always on, 

on every human)



Google Glass



Gwangjiang Market (Seoul)



What does this say?



What is this?



Is it okay for me to sit there? 

Is this woman annoyed that I 
sat down beside her? (Am I 
offending anyone?) 

Why is she staring at me? 

Should I attempt to greet the 
individuals at my table? (are 
they in a conversation that 
should not be interrupted) 

When is a socially 
appropriate time to 
interrupt?



A future digital assistant must capture and 
comprehend extremely subtle aspects of 
human social behavior 

Body language 
Eye movement 
Social context 
  



Capturing / tracking eye movement

[Courtesy Yaser Sheikh]



Capturing subtle facial expressions

[Gotardo, Simon 2015]



Sensing human social interactions

CMU Panoptic Studio 
480 video cameras (640 x 480 @ 25fps)
116 GPixel video sensor 
(2.9 TPixel /sec)

[Joo 2015]



Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]



Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]



500 GB/sec5 million 
vertices 

1

Based on USC-ICT Scan Resolution of Faces 1 

Kautz et al., "Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics," 2002.2 

What is the latent dimensionality of social signals?

100)

BRDF 
(surface appearance)

2

3

# of people

(12

3-space 
coordinates

300 Hz

Sampling rate 3

+x x x =

[Courtesy Yaser Sheikh]

Andersson et al., "Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more”, 
Journal of Eye Movement Research, 2010. 

3 



Figure 1: Over nine months we acquired a 70-hour egocentric video dataset capturing the daily outdoor activities of a
computer vision graduate student. The dataset spans a wide variety of environments and life experiences including daily
walks to campus, navigation through busy urban sidewalks and city parks, and socializing and having meals with friends.

single individual’s daily life experiences are only so broad.
For example, we observe (and can predict), that like most
humans, the student generally stops at intersections and
walks straight inside sidewalks, but we can be surprised by a
harmless jaywalk. While we record many predictable morn-
ings of taking the same path to campus, we also record trips
to parks and lunches with friends.

We explore the task of predicting egocentric camera
movement not only because navigation in the world is fun-
damental, but also because it is a task that is well-suited for
massive-scale video streams. With new data, perhaps in-
volving new life situations, arriving daily, it is intractable to
involve humans in the labeling of data or in the validation
of predictor performance. Motion is information that can
be reliably estimated from auxiliary sensors, affording the
ability to use a large corpus of examples to make (and then
automatically validate) new predictions.

2. Prior Work

Although early explorations of egocentric image capture
such as the MyLifeBits [8] system from Microsoft Research
and the U.K.’s “Memories for Life” grand challenge initia-
tive [1] were longitudinal studies of data from a single in-
dividual, nearly all recent egocentric datasets [20, 16] have
been collected by multiple individuals for very short dura-
tions and span. Aghazadeh et al. [2] collected data from a
single individual for an entire month, but recorded for a only

few minutes daily and along the same walking route each
day. Nebojsa et al. [11] collected data for 19 days across
different locations, but at a rate of only one image every
20 seconds. Our dataset has been collected at high frame
rate for several months and in a diverse set of environments.

As it has become easier to acquire egocentric video en
masse, the uniqueness of egocentric content, and the dif-
ficulty of its analysis, has made it an increasingly popular
target of recent study. Researchers have explored activity
recognition [5, 6, 13, 20], object recognition [21, 7], sum-
marization [16, 18, 11], and pose estimation [22] on ego-
centric videos. Several efforts, like our own, have sought
to exploit the redundant (aka “boring”) nature of egocentric
video streams. Aghazadeh et al. [2] leverage redundancy in
videos to identify novel events. Lee et al. [16] attempted
to remove the “boring” parts of egocentric videos by pre-
dicting important objects and events. Given that egocentric
video cameras are fundamentally mobile devices, we view
camera movement prediction as a challenging new task for
researchers in the area to consider.

Our work takes a purely data-driven approach to the task
of temporal prediction. Similar to prior methods [17, 27]
we make no assumptions about the visual environment, re-
quire no semantic labeling of the scene, and leverage sim-
ple nearest-neighbor search of large visual databases to find
examples that are likely to predict future behavior. While
[17, 27] also sought to transfer object motion across dif-

72 hours of recording 
over nine months: 
(Sep 2014 – May 2015)

Google Glass

Context is learned over time 
“KrishnaCam” egocentric video dataset

[Singh 2016]



[Singh 2016]



Novel data growth 
How much new visual data is seen as recording continues?

Similarity = cos distance of MIT Places layer 5 responses (full scene) 
“Novel frames” = average distance to top-5 nearest neighbors greater than threshold 

[Singh 2016]



How does the world evolve?
1. Change in companion

2. Change in object 
location (bike rack 
moved)

3. Change in object 
(different parked cars)

4. Change in season

5. Change in time of day 
(lighting conditions)

[Singh 2016]



Current Frame: 
Ground Truth Traj Predicted  Traj Top 10 nearest neighbors to current frame

Predicting where Krishna will walk next [Singh 2016]



Capturing to localize and navigate 
(cameras on every vehicle and robot)



Robot navigation depends on low-latency 
localization and surrounding object recognition



NVIDIA Drive PX

Tegra X1 (1 TFlop fp16 at 1GHz) 



AR requires low-latency localization and 
scene object recognition



Making “maps”: pervasive 3D construction

Outline
1. Large scale MVS for organized photos  

(Aerial photos) 
 
 
 

2. Large scale MVS for unorganized photos  
(Internet community photos)  
 
 
 

3. Large scale indoor modeling  





Smart headlight system

~1000 Hz (1 - 1.5 ms latency)

[Tamburo 2016]



Seeing clearly through precipitation
[Tamburo 2016]



Capturing to understand cities 
(Cameras on every street) 

(The megacity as the distributed compute/sensing platform of the future)



“Managing urban areas has become one of the most important development challenges of the 
21st century. Our success or failure in building sustainable cities will be a major factor in the 
success of the post-2015 UN development agenda.”   - UN Dept. of Economic and Social Affairs



Urban video command center
(Centro de Operações Preifetura do Rio de Janeiro)



Urban camera deployments today
§ 425M security cameras deployed worldwide (this number 

includes government owned and private) 
– 6,000 networked cameras in NYC 
– ~500,000 in Beijing [100% public area coverage] 
– 6M in UK, 20M in China 

§ Purpose is largely to observe and achieve for human query 
– Some ability to perform face / license plate detection, motion 

detection



On-campus Parallel 
Data Lab  Datacenter

High speed 
link

~ 1TFlop on 
board compute

HD Video camera

1. Use sensing infrastructure to actuate. How can video-
based analytics improve city efficiency? 

2. How do we build an platform that supports analytics 
application development for “all cameras in a city”? 

Distributed software platform for Pittsburgh-scale 
video-based data mining and analytics 



Goal: establish viability of city instrumentation to deliver 
applications that improve efficiency and quality-of-life

~5 sec resolution query-able map of all cars, pedestrians, 
bicycles, etc. 

Open parking spot detection and routing (eliminate circling for 
parking in greater Pittsburgh) 

Postmortem analytics for city planning (How many times was a 
bike near a bus? Did pedestrians hold up traffic?)  

Tracking/localization for autonomous vehicles

Accident or (near accident) detection  

Hit-and-run detection (work with insurance companies) 

Infrastructure monitoring: pot-hole detection, frozen street 
detection (salt truck allocation) 

Air-quality monitoring 

Watch my kids walk home alone after school…



Edge-to-datacenter distribution of computation (scheduling 
applications across the datacenter and to the edge) 

Multi-tenancy near the image sensor (multiple applications 
must share sensor feeds) 
First-class DBMS support for visual computing data 
Programming systems for expressing video analysis 
applications for this infrastructure (“how to program a city”) 

New computer vision models for attention and compression 
(leveraging history and priors to reduce datacenter ingest) 
New representations for images and videos that preserve 
privacy (what information is acceptable to leave the camera? 
Blurred faces? Features?) 

Working with local city government to establish policy and 
protocol as a research output.

Testbed for addressing interrelated technical, 
political, and privacy issues 



The world in 2030



The world in 2030
§ 8.5 billion people  [UN estimate] 
§ 61% urban (41 “megacities” of 10M people or more) [UN estimate] 
§ 2 billion cars  [Sperling 2009] 
§ 1.2 - 2B streaming security video cameras 
– Extrapolation from 245M in 2014, growth at 7-10% [IHS] 

§ Assume 8K stereo video per camera (~2 x 30 MPixel image) 
§ Total continuous capture capability of the world: 

- 12B video streams 
- 6 x 1017 pixels ≈ 600 petapixels  (600 quadrillion pixels) 



The world in 2030
§ Total continuous capture capability of the world: 
– 12B streams 
– 6 x 1017 pixels ≈ 600 quadrillion pixels 

▪ Consider evaluating a modern object-detection deep neural 
network (GoogLeNet) on all frames from these streams at 30 fps 
≈ 1019 images/sec 
- Today: Tegra X1 fp16: 12 images/sec/watt [NVIDIA] 
- With today’s technology: 1018 Watts 
- Estimated world’s energy consumption in 2013: 1013 Watts 



Final thoughts
§ Computer graphics has always involved a healthy interaction 

between architecture, programming systems, and algorithms 
– Domain focus has been exceptionally useful for vertical thought 
– Willing to throw out old and re-engineer software (new hardware enables 

programs that haven’t been written yet!) 
– Architects should know the algorithms well, and influence them! 

§ Visual computing has always challenged computer systems by 
its desire to simulate/synthesize complex visual information 

§ Next 1-2 decades: interpreting the worldwide visual signal 
– Acquiring and modeling everything humans would see, to enable computers to 

interpret and analyze 
– We will continue to take every op (op/Watt) you can give us



Thank you

Thanks to Yaser Sheikh, Srinivas Narasimhan, and Ren Ng for various slide credits


