THE INFLUENCE OF ACADEMIC RESEARCH ON INDUSTRY R&D

Steve Keckler, Vice President of Architecture Research
June 19, 2016
AGENDA

Academic/Industry Partnership

Architecture 2030
My Background/Experience

- 14 years as tenure-track professor at UT-Austin

- 6 years leading architecture research at NVIDIA
 - Drive architecture research beyond product time horizon (5-10 years)
 - Pay attention to trends and academic research
 - Not just architecture but applications, technology, programming systems, etc.
 - Collaborate with university researchers (and other companies)
 - Invest heavily in technology transfer with product teams
Disclaimer

These are my opinions.

They represent my experiences.

My observations may not necessarily be consistent with experiences at other organizations.
Current NVIDIA/Academic Collaborations

That I know of
Examples of Technology Transfer

At NVIDIA

- Streaming architectures (Merrimac, etc.)
- Brook/Cuda
- CuBLAS
- CuDNN
- Machine learning frameworks (Caffe, Torch, Theano, etc.)
- A lot more in the pipe...
Observation 1: Technology Transfer Gap
Observation 1: Technology Transfer Gap
Observation #2: Academic Papers
Yes - we do read LOTS of them

It’s a Trap: Emperor Palpatine’s Poison Pill

Zachary Feinstein
Washington University in St. Louis
December 1, 2015

Abstract

In this paper we study the financial repercussions of the destruction of two fully armed and operational moon-sized battle stations (“Death Stars”) in a 4-year period and the dissolution of the galactic government in Star Wars. The emphasis of this work is to calibrate and simulate a model of the banking and financial systems within the galaxy. Along these lines, we measure the level of systemic risk that may have been generated by the death of Emperor Palpatine and the destruction of the second Death Star. We conclude by finding the economic resources the Rebel Alliance would need to have in reserve in order to prevent a financial crisis from gripping the galaxy through an optimally allocated banking bailout.

Key words: Star Wars; systemic risk; financial crisis; financial contagion; bailout allocation

Plus guest lectures, intern talks, etc.
Wide audience: research + product teams
No institutional ignorance of good research
Observation #3: Value of an Individual Idea
A Product Consists of Thousands of Ideas/Inventions

Reasonable to explore an idea in “isolation”

But acceptance depends on interaction between the idea and all of the other factors in the design
Observation #4: Experimental Results

We don’t believe your simulator

But don’t despair – the product teams don’t believe ours either

More important than precise results include

- Quality of the idea
- Characterization of opportunity
- Insight into range of solutions

Good ideas will get re-examined in context of product roadmap
Observation #5: Field Can Advance Quickly
Product Can Be Ahead of Academic Research

- Can point to papers that have been superseded by product features at time of publication
- Incremental research in well-trodden area is not usually relevant
How to Minimize the Impact of Your Research

- Work on well-trodden and near-term areas
 - More warp scheduling papers please
- Optimize research for maximizing paper count
- Don’t develop direct relationships with industry research and product teams
- Don’t visit or take sabbatical time in industry
- Focus your papers/presentations on the results at the expense of ideas and characterizations
- Expect that your ideas are so good that they will be adopted all by themselves
Architecture 2030
2002

Pentium4
- 130nm
- 5.5M xtors
- 1 core
- 4-way HT
- ~6 GF

2016

GP100 GPU
- 16nm
- 15.3B xtors (300x)
- ~2K math units (1000x)
- ~5.3TF (~1000x)

2030

?
Emerging (Esoteric) Technologies

Quantum

Molecular

DNA

AT + CG = 00
AT + GC = 01
TA + CG = 10
TA + GC = 11
Cost

Manufacturability

Programmability

Reliability

Predictability
Innovator’s Dilemma
Christensen, 1997

Inferior disruptive technology can eventually displace incumbent if it can leverage high growth sector of market.

So-called esoteric technologies need high-volume “killer app”.
“I would predict that in 10 years there’s nothing but quantum machine learning—you don’t do the conventional way anymore.”

- Hartmut Neven (Google); MIT Technology Review 6/9/16

Is this plausible?
The Death of “New” Chips?

Slowing of Technology Opens up Architecture Competitive Landscape
2030 Predictions

No wholesale replacement of CMOS (and its direct derivatives)

Ample room for innovation in packaging, circuits, heterogeneous systems (electrical, optical)...and Software
2030 Predictions

No wholesale replacement of CMOS

The system will be more important than the chip
2030 Predictions

No wholesale replacement of CMOS

The system will be more important than the chip

Ample room for domain-specific acceleration
2030 Predictions

No wholesale replacement of CMOS
The system will be more important than the chip
Ample room for domain-specific acceleration
We will still be struggling with programmability

Parallel and Heterogeneous Systems

Programmability vs. Fixed-Function
2030 Predictions

No wholesale replacement of CMOS
The system will be more important than the chip
Ample room for domain-specific acceleration
We will still be struggling with programmability
Chip design will be even more like SW design
Summary

“Rennaissance” for architecture research
- Architecture will continue to increase in importance
- But needs to span stack (circuits to applications)

Stay the course on architecture principles
- Data transformation, date movement, data storage
- Parallelism, locality, etc.

Key opportunities
- Scalability - at multiple levels
- Domain-specific acceleration