

Computing and Biomolecules

Alvin R. Lebeck Duke University

Partial Goals of Talk

- Introduce you to potentially disruptive technology
 - Opportunities & Challenges
- Challenge you to think "outside the box"
 - Maintain vs. break abstractions
- Bridge the Engineering Gap
- Back to the Future: understand entire stack from chemistry/physics up through applications (hipster architect?)
- Be interdisciplinary!

Setting Context

- Computing
 - Processing and storing information
- Biomolecules
 - DNA, proteins, fluorescent molecules, etc.
 - Everyday use in the Life Sciences
- 1. Why put these together?
- 2. How do we put these together?
- First some background on biomolecules

Biomolecules: Synthetic DNA

- Single strand is sequence of nucleotides
- Well defined rules for base pair matching
 - Thermodynamics driven hybridization
 - Forms well-known double helix
- Molecular Scale
 - 3.4 Angstrom spacing
 - 2nm diameter
- Synthetic
 - Specify sequence of bases
 - Engineer systems

Biomolecules: Chromophores (Fluorophores)

- Optically active small-molecule
- Absorb and emit photons of specific wavelengths
 - Time to fluoresce follows exponential distribution
- Size: ~20-100 atoms

Biomolecules: Resonance Energy Transfer

- Molecular Beacon or Ruler
 - E.g., detect protein folding
- Resonance Energy Transfer (RET)
 - Closely spaced (1-10nm)
 - Non-radiative dipole-dipole interaction
- Efficiency decays with 6th power of distance
- Efficiency depends on spectral overlap and dipole orientation
- Low heat generation (emits far field photon)

Why Biomolecules?

- Scale in feature size
 - DNA: 3.4 Angstroms between base pairs
 - DNA: 2nm diameter double helix
 - Chromophores: 20-100 atoms
- Scale in fabrication
 - Leverage chemical industry
 - Engineer systems at low cost and high volume
 - 1 grad student 8 hours ≈ one month of TSMC Fab 15 throughput
- Low Heat Dissipation
- Common in Life Sciences
- New Domain for computing
 - Biologically compatible
 - E.g., computing within a cell

How do we use Biomolecules?

- Exploit physical properties for
- 1. Storage
- 2. Computation
- 3. Fabrication
 - Place components (including other biomolecules)
 - Gates, circuits, systems

Biomolecular Storage

- Archival Storage
 - DNA base sequence as encoded
 data
 - Density: 10⁹ GB/mm³
 - Durability: 100s of years
 - Read Latency: DNA Sequencing
- Optical Storage
 - Photo cleavable link of Chromophore to DNA
 - Multiple bits w/in diffraction limit
 - Density: 1000x > blu-ray

[Figure form Barnholdt, et al. ASPLOS 2016]

Biomolecular Computation

- Specify sequences such that desired hybridization occurs
- DNA Computing
 - · Hamiltonian Path, Tile-based computing,
 - Strand displacement (above)
 - Attach proteins (molecular recognition)
- Molecular Robotics, Synthetic Biology
- Chemical Reaction Networks
 - Careful about different input modes (e.g., concentration of disparate chemicals)

Biomolecular Fabrication

- Molecular Self-assembly
 - Molecules self-organize into stable structures

- What structures?
- What devices?
 - Nanotubes, nanorods, chormophores, etc.
- How does self-assembly affect computer system design?

DNA for Structure

- Directed Assembly
 - Functionalize devices, etc.

- DNA Scaffold
 - Engineered Structures
 - Origami
 - Hierarchical
 - Scale: ~10¹⁴ grids/mL
- Can exploit DNA programmability
 - "at fabrication computing" [IEEE MICRO 2005]

DNA Self-Assembled Parallel Processor

RET-based Stochastic (Probabilistic) Computing

- Multi-chromophore structure: phase-type distribution [Wang et al, 2015].
- Can fit most distributions to phase-type distribution [Asmussen et al, 1996].

14

Duke Architect

• New Functional Unit [Wang et al, 2016]. (Wednesday talk...)

RET-based Logic

- Chromophore types:
 - 1. Eval exciton source
 - 2. Out output, monitored for fluorescence
 - 3. Mediators connect eval to out
 - 4. Inputs -x1 and x2
 - Disrupt (no RET)
 - Excitation represents applying a 1
- Multistep Cascades
- Energy and Exciton Restoration
- Biologically compatible
 - Sub-diffraction limit addressable sensing [Pistol et al. Small 2010]
 - Nanoscale Sensor Processor smaller than largest known virus [Pistol et al. ASPLOS 2009]

NAND Gate Layout & Simulations

RET-based Logic Power and Area

- 15nm CMOS, two-input gates
- Power: RET-Logic100x lower than CMOS
- Area: at least 500-800x smaller than CMOS
 - Conservative: Assumes two input gate occupies entire 19nm x 19nm DNA tile
- Emit far field photon -> no localized heat generation...

The Problem with Exponentials

- Desire for more compute and storage
- Biomolecular scale
- But...O(n!), O(xⁿ), etc.
 - E.g., storage increases 40%/year
- Not Enough Atoms!
- Earth:
 - 100 years of storage
 - 42 node Hamiltonian
- Known Universe:
 - 200 years of storage
 - 60 node Hamiltonian
- Architecture 2030:
 - Still need algorithms...
 - Use atoms efficiently

Conclusion

"It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change."

- Charles Darwin

- Technology
 - May not be a single device technology for the future
- Biomolecules
 - 1. Scale in feature size
 - 2. Scale in manufacturing
 - 3. Readily available
 - 4. New Domain for Computing
 - 5. Can exploit physical properties
- Interdisciplinary research teams
 - Scale up technology: from bench to processors ("engineering gap")
 - Differing goals/metrics
 - Need bus driver or shared vision
 - Publishing can be difficult...but the research is really fun!

Duke Nanosystems Overview

